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Abstract 

 
 In the present work the three dimensional restricted three body problem (in brief 
TDRTBP) is formulated. The relative equilibria are obtained. The location of Fawzy 
equilibrium circle is discovered (in brief FEC). The Hamiltonian near any point on the 
circumference of FEC is constructed. The infinitesimal orbits near FEC are derived using an 
approach developed by Delva and Hanslmeier. Implicit formulas for the position and 
momentum vectors for nth

iL

 order and explicit formulas for the the same vectors for the first, 
second and third orders are obtained. 
 
Keywords: Restricted Three Body Problem, Fawzy Equilibruim Circle. 

 
Introduction 

 
 The three-body problem is a very rich dynamical system in mathematical intricacy 
and practical applicability. The restricted three-body problem interested in the motion of a 
particle of negligible mass in the presence of two massive bodies. The subject of the periodic 
solutions of the restricted problem of three bodies acquired great importance and interest 
since the last decades of the 20th century. The main reason is the need for space mission 
orbits in the vicinity of one of the colinear or triangular libration points. There are five 
equilibrium points in the classical three body problem, namely , = 1i , 2 , 3 , 4 , 5 ,  these 
points usually called Lagrangian or libration points. Abd El-Salam (2012) discovered the so 
called Fawzy ξζ - triangular equilibrium points in the plane  0=η ;  the peripindicular plane 
to the plane of motion of the primaries. The author also discovered the so called Fawzy 
equilibrium circle in the three body problem. This circle passes through the Lagrange's and 
Fawzy tringular points.  
 
 The literature is rich and the works dealing with the periodic orbits near the 
equilibrium points cannot be exhaustively reviewed   However, it will be beneficial to sketch 
some of these most important works. An early and very useful analysis of the behaviuor of 
the bodies near libration points has been compiled by a group of eminent scientists in a work 
by Duncombe and Szebehely (1966). Richardson (1980), Barden and Howell (1998), Howell 
(2001), Gomez et al. (1998; 2004), Selaru and Dimitrescu (1995), Namouni and Murray  
(2000), Corbera and Llibre (2003), Ashraf Hamdy et al. (2005). 
 
 The motivation of the present work is to study the the infinitesimal orbits near any 
point on the circumference of Fawzy equilibrium circle (The recently discovered equilibruim 
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circle).  A similar treatment has appeared in the work by Ashraf Hamdy et al. (2005), but 
they has applied the Delva-Hanslmeier technique for the infinitesimal orbits near the 
Lagrange's equilibruim points. 

Three Dimensional RTBP 
 
Let 3

1 2 ∈r ,r R  being the positions of the two massive bodies 1  and 2  respectively, 
which is the solution of the two-body problem.  Let the first mass be ] [0,1µ ∈ , thus the second 
mass has 1 µ−  and the gravitational constant is equal to 1 . Let us denote the center of mass 

( )1 2= 1µ µ+ −R r r  one can easily prove that 
2

2
= 0d

dt
R . Transforming to co-moving coordinates 

_

= , = 1,2i i i−r r R  and let ∈r  3R  denotes the position of the test particle, these yield the 
equations of motions in these new variables as;  

 

 ( )
_

2 _ _ _ _

1 23 32 _ _ _ _

1 2

1
=d

dt
µµ −   − − − −   

   
− −

r r r r r
r r r r

                                         (1) 

 
At this point we start making the following assumptions: (i)  The primaries move in a circular 
plannar orbit around their center of masss with constant angular velocity normalized to 1  
without loss of generality.   (ii)  The frame of reference is rotating with the rotation matrix 
defined below. In this coordinate system the primaries become stationary and lie along 1x -
axis.   (iii)  The test particle moves in a plane perpindicular to the primaries'plane, with 
coordinates ( )1 2 3= , , TT x x xx .   Therefore we set, 
 

( )[ ]
_

1 2 3= ,Tt x x xr R  
 

( )[ ]
_

1 = 1 0 0 ,Tt µ−r R  
 

( )[ ]
_

2 = 0 0 Tt µ−r R  
 

in which ( )tR  is the rotation matrix, given below, with the following properties, 
 

 ( )
cos sin 0

= sin cos 0
0 0 1

t t
t t t

− 
 
 
  

R  

 ( ) ( ) ( ) ( )2
1

2

0 1 0
= , = = 1 0 0

0 0 0

d t d t
t t J

dt dt
−

− 
 ⇒ −  
  

R R
R R  

 

We can deduce the equations of motion for 3 :∈x R  
 

 
[ ]( )

[ ]

( ) [ ]( )
[ ]

2

3 32

1 0 0 1 0 0
2 =

1 0 0 0 0

T T

T T

d dJ
dt dt

µ µ µ µ

µ µ

− − − − −
− + − −

− − − −

x xx xx
x x
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Finally, setting = d J
dt

+
xp x  we find that these are the Hamiltonian equations of motion on 

[ ] [ ]{ }6 / = 1 0 0 , 0 0T T
µ µ− −xR  with Hamiltonian 

  

 ( ) ( )
[ ] [ ]

3

=1

1 1= .
2 1 0 0 0 0T T

i
p pη ξ

µ µξ η
µ µ

−
− − − −

− − − −
∑ p p

x x
H                        (2) 

 
where we have equipped 6R  with the canonical symplectic form d dp d dpξ ηξ η∧ + ∧ , i.e. the 
equations of motion are given by 
  

=d
dt

∂
∂

x
p
H , 

                                         
= .d

dt
∂

−
∂

p
x
H

 
 

Relative Equilibria 
 
        The relative equilibria are the the solutions of the Hamiltonian vector field given by (2). 
Let us write the gravitational potential energy function as 
  

 ( )
[ ] [ ]

1=
1 0 0 0 0T T

−
Ω − −

− − − −

µ µ

µ µ
x

x x
                                     (3) 

 
The equilibrium solutions of (2) are obtained setting all the partial derivatives of H  equal to 
zero as; 
 

 

( )

( )

( )

21

2
11 1

12

1
22 2

3

33 3

= = 0 = = 0

= = 0 = = 0

= = 0 = = 0

x

x
x

x

x
x

x

x

p x U
pp x x

p x U
pp x x

p U
p x x

∂ + ∂ ∂
− +∂ ∂ ∂

∂ − ∂ ∂
+∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

x

x

x

H H

H H

H H

 

 
or equivalently  

 ( ) ( ) ( )
1 2

1 2 3

= , = , = 0x x
x x x

∂Ω ∂Ω ∂Ω
∂ ∂ ∂

x x x                                      (4) 

 
where p  at the equilibrium point can easily be found once we solved (4) for x  at the 
equilibrium point. Note that x  solves (4) if and only if x  is a stationary point of the function 

( ) ( ) ( )2 2
1 2

1=
2

U x x+ −Ωx x   called the amended potential.  Let us first look for equilibrium points 

of the amended potential that lie on the line of syzygy (The line on which all the three bodies 
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similtanuously lie at some specified date), i.e. for which 2 = 0x . Note that ( )
2

= 0
U

x
∂
∂

x  is 

automatically satisfied in this case since ( ) ( )
2 1=02

= 0 , = 0
x

U
x x

∂Ω ∂
∂ ∂

x x  reduces to 

  

 ( ) 2
1 1

1 1 1 1

1 1,0 = = 0
2 1

d dU x x
dx dx x x

 −
+ +  − + + 

µ µ
µ µ

                                    (5) 

 
Clearly,  

( ) ( )1 1
1 1

,0 , ,0 ,lim lim
x x

U x U x
→−∞ →−

→ ∞ →∞
µ

 

 
( ) ( )1 1

11 1

,0 , ,0limlim
x x

U x U x
→ − →∞

→ ∞ →∞
µ

 

 
 so  ( )1,0U x   has at least one critical point on each of the intervals  

 
 ] [ ] [ ] [, , , 1 , 1 ,µ µ µ µ−∞ − − − − ∞  

 
To explore the concavity of the mentioned intervals, we calculate the second derivative as; 
  

 ( )
2

1 3 32
1 1 1

1,0 = 1 2 2 > 0
1

d U x
dx x x

−
+ +

− + +
µ µ

µ µ
                                    (6) 

 
So ( )1,0U x  is convex on each of these intervals and we conclude that there is exactly one 
critical point in each of the intervals. The three relative equilibria on the line of syzygy are 
called the Eulerian equilibria. They are denoted by 1L ; 2L  and 3L , where ] [ { }1 , 0L µ∈ −∞ − × , 

] [ { }2 , 1 0L µ µ∈ − − ×  and ] [ { }3 1 , 0L µ∈ − ∞ × . 
 
Now we shall look for new equilibrium points that do not lie on the line of syzyg.   Let us use 

( )

( )

2 2 2
1 2 3

2 2 2
1 2 3

2 2 2
1 2 3

= 1 ,

= ,

=

x x x

x x x

x x x

+ − + + 


+ + + 


+ + 

ξ µ

η µ

ζ

                                                       (7) 

 

as coordinates in each of the half-planes  2 0x >  and 2 0x < . Then U  can be written as 
 

( ) ( )2 2
2 1

2 1

1 2 1 2 1= 1 1
2 2 2

U
   

− + + + − −   
   

µ η µ ξ µ µ
η ξ

                                                                 (8) 

 
At the equilibrium points = = = 0U U U∂ ∂ ∂

∂ ∂ ∂ξ η η  
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( )

2

2

1= = 0 1,

1= 1 = 0 1

U

U

 ∂
− ⇒ = ∂  

 ∂
− − − ⇒ = ∂  

µ ξ ξ
ξ ξ

µ η η
η η

 

 
Substituting 1, 1= =ξ η  back to the first two equations of (7) yields 
 

( )

( )

2 2 2
1 2 3

2 2 2
1 2 3

1 1

1

x x x

x x x

+ − + + =


+ + + = 

µ

µ

                                                               (9) 

 
We can solve this system of two equations in three variables yields two variables namely;  1x  
which will have a fixed value,  and 2x  which will have a wide range as we shall see below. 
The third variable 3x  can be expreesed in terms 2x . 
Subtracting the two equations of (9) yields 
 

( ) ( ) ( ) ( )2 2

1 1 1 1 1

11 0 1
2

x x x x x+ − − + = ⇒ + − = + ⇒ = −µ µ µ µ µ  

 
Substituting 1

1
2

x = − µ   back into  any equation of (7) we get 

2 2
2 3

3=
4

x x+
   

 ⇒  
   

2
3 2

3=
4

x x± −  

provided that 

2

3
2

x ≤      ⇒      2

3 3
2 2

x−
≤ ≤ . 

 
Therefore we have infinite number of solutions (including Lagrange triangular equilibrium 
points and Fawzy triangular equilibrium points), their coordinates are given by 
 

 ( ) 2
1 2 3 2 3 2

1 3 3 3, , = , , =
2 2 2 4

x x x x x x
 −

− ≤ ≤ ≤ ± −  
 

µ
                             

(10) 

 

Transformed Hamiltonian Near FEC 
 
At this point we are interested in the infintesimal orbits near any point on the 

circumference of FEC. Moving the origin to any point on FEC and denoting to the new 
coordinates and momenta by ( )1 2 3 1 2 3

, , , , ,X X XX X X P P P  by the following substitution 
 

1 1= ,X x+ξ  2 2= ,X x+η  3 3= ,X x+ζ  21
= Xp P x−ξ , 12

= Xp P x+η , 
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where  
( ) 2

1 2 3 2 3 2

1 3 3 3, , = , , =
2 2 2 4

x x x x x x
 −

− ≤ ≤ ≤ ± −  
 

µ . 

 

These settings yields the transformed Hamiltonian as; 
 

( ) ( )2 2 2 2 2 2 2
2 1 1 2 2 3 31 2 1 2

1 1 1 3 1 3=
2 8 2 2 2 2X X X XP P X P X P X x X x X   + + − + + − + −   

   
H

1 2 2 3 3 2 1 2 3 1 3

1 1 13 3
2 2 2

X x X x X x X X x X X     + − + + − − − −     
     

µ µ µ  

( ) ( )2 4 2
2 3 2 3 2 2 2

9 1 9 3 13 1 1 2 1
8 2 32 8 2

x x X X x x x − − − − + − + − 
 

µ µ µ µ                                               (11) 

 

Perturbation Approach and Solutions 
 
We use an approach developed by Delva (1984) and Hanslmeier (1984) in which the 

procedure can be performed with a differential operator D . A special linear operator, the Lie 
operator, produces a Lie series. The convergence of the series is the same as for Taylor series, 
since the Lie series is only another form of the Taylor series whose terms are generated by 
the Lie operator. We will use this Lie series form for two reasons. The first is the requirement 
to build up a perturbative scheme at different orders of the orbital elements. The second is its 
usefulness in treating the non-autonomous system of differential equations and non-canonical 
systems . This enables a rapid successive calculation of the orbit.  In addition we can change 
the stepsize easily (if necessary). This is an important advantage for the treatment of the 
problems which has a variable stepsize, e.g. for the mass change of the primaries. The 
formulas has an easy analytical structure and may be programmed without difficulty and 
without imposing extra conditions on the convergence. Since any desired number of terms 
can be found by iteration, the series can be continued up to any satisfactory convergence 
reached.  

 

( ) ( )( )3

=1
= , , ,Xi i

i X i Xi i
i i X i

dPdXD X P X P
X dt P dt t

 ∂ ∂ ∂
+ +  ∂ ∂ ∂ 

∑ = X , PΞ Ξ
Ξ Ξ                               (12) 

 
Using Leibnitz formula for the thn  derivative of a product , namely  
 

 ( ) ( )
=0

!= , =
!( )!

n m n mn
m n
n mn m n m

m

d d g d h ng z h z C C
dZ dZ dZ m n m

−

−
   −

∑  

 
yields the   n th   application of the Lie operator denoted by ( )nD  as; 

 

 ( ) 3

=1 =0
=

n mm n m m nn
Xn m i i

n m n m m n m n
i m i X i

d Pd XD C
X dt P dt t

−−

− −

  ∂ ∂ ∂
+ +   ∂ ∂ ∂   

∑∑
Ξ Ξ Ξ

Ξ                               (13) 

 
Let 1 2 3 1 2 3

( , , , , , )X X XX X X P P PH  be the Hamiltonian function near any point on the 
circumference of Fawzy equilibrium circle as given by (11), and using the canonical 
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equations of motion =i

X i

dX
dt P

∂
∂

H , =X i

i

dP
dt X

∂
−
∂

H   to evaluate the derivatives 
n m

i
n m

d X
dt

−

−
, 

n m
X i

n m

d P
dt

−

−
 

then we can reach to the solutions (coordinate and momentum vectors, X , P  respectively) as; 
  

( )( ) ( ) ( ){ }1 2, ,0 0 0 0=0 =00

( ) ( )= = =
! !

j j
t t D n nj

j j

t t t te D D X D X
j j

∞ ∞
− − −

+∑ ∑X=X P=P X=X P=PX=X
X X X                             (14) 

 

  

 ( )( ) ( ) ( ) ( ){ }1 2 3, ,0 0, 0 0=0 =00 0

( ) ( )= = =
! !

j j
t t D n n nj

X X X
j j

t t t te D D P D P D P
j j

∞ ∞
− − −

+ +∑ ∑X=X P=P X=X P=PX=X P=P
P P P           (15) 

 

Solutions at Different Orders 
 

In this section we are going to evaluate the solutions at different orders.  From the definition 
of operator ( )nD ,  given in (13), we get the following expressions for the coefficients. 

 
The First Order Solution 

 
Setting = 1n  we have the required coefficients in the equations (14), (15) to yield the 

first order solution as; 
 
 ( )1

1 21
= ,XD X P X−  

 ( )1
2 12

= ,XD X P X+  

 ( )1
2 2 1 3 31 2

3 1 1 1= 3 3 ,
2 4 2 2X XD P P x x X x X     + − − + − − −     

     
µ µ µ  

 ( )1 2
2 2 2 2 1 2 3 32 1

1 3 1= 2 3 3 ,
2 2 2X XD P P x X x x X x x X   − − − − + − +   

   
µ  

 ( ) ( )1 2
3 1 2 3 2 3 3 33

1= 3 3 1 3
2XD P x X x x X x X x − − + − − − 

 
µ  

 
The Second Order Solution 

 
Setting = 2n  we have the required coefficients in the equations (14), (15) to yield the 

second order solution as; 
 

( )2
1 2 2 1 3 32

3 5 1 1= 2 3 3 ,
2 4 2 2XD X P x x X x X     + − − + − − −     

     
µ µ µ  

( ) ( )2 2
2 2 1 2 2 2 3 3 21

1= 3 3 1 3 2 ,
2 XD X x X x X x x X P x − − − + − − 

 
µ  

( )2 2
2 2 2 1 2 2 2 21 1

2 3 3 3 2

3 5 1 3 53 3 3 3
2 4 2 2 4

13 3 ,
2

X XD P x x P x X x x x X

x x X x x

     = − − + − − − − +     
     

 + + − − 
 

µ µ µ

µ
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( ) ( )2 2 2
2 2 2 2 2 1 2 22 1 2

3 3

1 3 5 13 2 3 3 3 3
2 2 4 2

1 13 ,
2 2

X X XD P x P x P x x x X x X

x X

     = − − − + − − + + −     
     
   − − + −   
   

µ µ µ

µ µ
 

( )2
3 2 3 2 3 1 3 23 1 2

1 1= 3 3 3 3
2 2X X XD P x P x x P x x X x X   − − + − − −   

   
µ µ  

 
 
 The Third Order Solution 

 
Setting = 3n  we have the required coefficients in the equations (14), (15) to yield the 

second order solution as; 
 

( )3
1 2 2 2 11

2
2 2 2 2 2 3 3 2

13 3 13 6
4 2 2
13 36 3 6 2 ,
4 2

XD X x x P x X

x x x X x x X x

   = + − + −   
   
 − − + − + − 
 

µ µ

µ
 

( ) ( )

( ) ( )

3 2
2 2 2 1 2 2 3 3

2
2 21 2

1 16 3 3 3 1 2
2 2
13 1 3 1 2 ,
2 X X

D X x x X x X x X

x P x P

   = + − + − − −   
   
 + − − − + − 
 

µ µ µ

µ µ
 

( )3 2
2 2 2 21 1 2

1 53 3 3 6
2 2X X XD P x P x x x P   = − + + − −   

   
µ µ  

2 2 2 2
2 2 2 2 2 1

15 3 15 259 9
2 4 4 16

x x x x x X + − + − − + 
 
µ µ µ  

2 2 2 2 3 3

1 1 3 53 3 3
2 2 2 4

x X x x x X     + − + − − +    
     

µ µ µ  

2 2

1 3 53 ,
2 2 4

x x   − − − +  
   
µ µ  

( ) ( )3 2
2 2 2 22 1 2

3 133 6 3 1 2
2 4X X XD P x x x P x P = − − + + − 

 
µ µ

 ( ) ( )2 4 2
2 2 2 2 1 2 2 2 2 2

3 3 132 1 6 12 12 5 9 12 3
8 2 4

x x x x X x x x x X − − + − − + − − + + 
 

µ µ µ

  

     

2 2 2 2
2 3 2 3 2 2

15 59 9 9 3 3 3
4 4

x x x X x x   + − + − + − + − +   
   
µ µ µ µ  

( ) ( ) ( )

( )

3 2
2 3 3 3 2 2 2 13 1 2

2 2
2 2 2 2 2

2 3 2 2 3 2 3 3 3 2 3

1 36 6 2 1 24 6 12 5
2 8

1 13 2 3 9 9 3 3
2 2

X X XD P x x P x P x x x x X

x x x X x x x X x x x

   = − − − − − − + +   
   

    + − + + − − + + − −         

µ µ µ

µ µ
 

 
Now we can rewrite the solution up to the third order as; 
 

{ }
3 3

, , ,0 0=1 =1

( )=
!

n

i n i i n X ni
n i

t tX P
n
−

+ +∑∑ X

X=X P=P
X M N C  

  

{ }
3 3

, , ,0 0=1 =1

( )=
!

n
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Conclusion and Outlook 
 
                  Three dimensional restricted three three body problem is constructed.  The relative 
equilibria are obtained. An equilibruim circle is discovered namely Fawzy Equilibruim circle 
(in brief FEC). Infinitesimal orbits near FEC using an approach developed by Delva and 
Hanslmeier are derived. We obtained implicit formulas for the position and momentum 
vectors for thn  order and explicit formulas for the the same vectors for the first, second and 
third orders. In forthcoming works we aim to evaluate the periodic orbits near FEC in the 
elliptic and/or oblate restricted three body problem. Also we hope to investigate the perturbed 
location and stability of FEC in this framework. The same points will also be treated in the 
domain of the relativestic restricted three body problem. 
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